问题
Note:
Elements in a triplet (a,b,c) must be in non-descending order. (ie, a ≤ b ≤ c)
The solution set must not contain duplicate triplets.
For example, given array S = {-1 0 1 2 -1 -4},
思路
考虑一下如何将3SUM问题转变一下:如果我们随机确定了一个数a,问题是不是就变成了,在剩下的数里面找到2个数和为0-a,是不是就和2SUM问题一样了?
其实这题相比2SUM多了几个难点:
2. 结果要按升序排列
3. 结果中不能出现重复的结果
当然,我们可以通过写很多条判断语句解决这些问题,但是其实稍微想一下,可以发现,只要保证数组一开始就有序就好办很多了。
我们可以选择3个变量,left,mid,right。在循环的时候,永远保证相对顺序就行了。这样在插入结果的时候,就自然是升序的。
首先,我们考虑如何确定第一个数left,这肯定是我们第一层循环。第一个数可不能无限制的随便选,因为我们要保证上面的几个条件都满足,我们要保证它时刻是最小的数,那么我们可以考虑left取到全部非正数就行了。(如果要和为0,至少要有1个非正数)
然后就是mid和right的确定了,我们采用思路2的方案,mid和right分别从两端往中央扫描,如果mid+right还比较小,那就需要mid右移,反之right左移
一切看起来特别美好了,可以当你提交的时候,你会发现,还是会报错,因为它虽然能解决问题2,但是不能处理重复结果。举个最简单的例子:
-2 -2 -1 -1 0 1 1 2 2
这个代码会输出数个[-2 0 2] [-1 0 1] ,解决方案也很简单,如果一个left指向的数是之前判断过的,跳过,如果mid和right往中间移动的时候,是刚才的数,也跳过。